Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys †
نویسندگان
چکیده
This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper.
منابع مشابه
Standing Handball Throwing Velocity Estimation with a Single Wrist-Mounted Inertial Sensor
Background. It is well known that overarm throwing is one of the most performed activities in the handball. Shoulder and glenohumeral injuries incidence are high in handball because of both pass, and shooting activity was executed repeatedly in high angular speed. Objectives. This study set out to investigate the usefulness of inexpensive commercial inertial movement sensors for prediction of ...
متن کاملReview and Comparison of In-field Calibration Methods of Accelerometer Based on Gravity Vector
Considering the wide applications of accelerometers to determine position and attitude and due to reducing of accuracy of this sensors because of some errors, this paper discusses the calibration of accelerometers. Also because the traditional calibration methods are very time consuming, costly and need precision laboratory equipment, in-field calibration methods are recommended which are simpl...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملDesign of an Active Acoustic Sensor System for an Autonomous Underwater Vehicle
It is with great honour that I submit this thesis, entitled " Design of an Active Acoustic Sensor System for an Autonomous Underwater Vehicle " as partial fulfilment of the requirements of the degree of Bachelor of Engineering with Honours. Abstract Unstructured oceanic environments present great challenges to AUV navigation. However, with continual improvements in sensor technology, new method...
متن کاملThree Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017